A Calculus of Stochastic Systems for the Specification, Simulation, And Hidden State Estimation of Hybrid Stochastic/Non-stochastic Systems

نویسندگان

  • Albert Benveniste
  • Bernard C. Levy
  • Eric Fabre
  • Paul Le Guernic
چکیده

In this paper, we consider hybrid systems containing both stochastic and non-stochastic 3 components. To compose such systems, we introduce a general combinator which allows the specification of an arbitrary hybrid system in terms of elementary primitives of only two types. Thus, systems are obtained hierarchically, by composing subsystems, where each subsystem can be viewed as an "increment" in the decomposition of the full system. The resulting hybrid stochastic system specifications are generally not "executable", since they do not necessarily permit the incremental simulation of the system variables. Such a simulation requires compiling the dependency relations existing between the system variables. Another issue involves finding the most likely internal states of a stochastic system from a set of observations. We provide a small set of primitives for transforming hybrid systems, which allows the solution of the two problems of incremental simulation and estimation of stochastic systems within a common framework. The complete model is called CSS (a Calculus of Stochastic Systems), and is implemented by the SIG language, derived from the SIGNAL synchronous language. Our results are applicable to pattern recognition problems formulated in terms of Markov random fields or hidden Markov models (HMMs), and to the automatic generation of diagnostic systems for industrial plants starting from their risk analysis. A full version of this paper is available [1], omitted proofs can be found in this reference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Hybrid Probabilistic Search Methods for Simulation Optimization

Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...

متن کامل

A Calculus of Stochastic Systems for the Specification, Simulation, and Hidden State Estimation of Mixed Stochastic/Nonstochastic Systems

In this paper, we consider mixed systems containing both stochastic and non-stochastic 1 components. To compose such systems, we introduce a general combinator which allows the speciication of an arbitrary mixed system in terms of elementary components of only two types. Thus, systems are obtained hierarchically, by composing subsystems, where each subsystem can be viewed as an \increment" in t...

متن کامل

Confidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)

Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994